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Foreword

lean energy — the phrase rolls pleasantly and hopefully off the tongue. Only

“clean energy” does not really exist. No matter the energy type, all energy pro-
duction and consumption has consequences, some readily apparent, others more
subtle. The most apparent consequence of using energy — releasing heat into the
surrounding environment — is so common it sinks into the background and is
not much discussed or debated. The more energy we use, the hotter our world
becomes, even if we achieve “carbon neutral” status. Cleaner (not clean) energy is
a complex topic with known and unknown consequences.

Conserving and limiting our use of energy and improving energy efficiency in
the quest to reduce energy use per capita must be part of the energy dialogue.
Those goals serve as important cornerstones of the energy policy debate and
are, arguably, as important, if not more important, than other parts of achieving
“cleaner energy”

We hope this book provides insight into the electrical power industry and aids
in the energy dialogue moving the world along its journey to cleaner energy.

XiX



Electrical Energy Basics

There is no greater satisfaction for a just and well-meaning person than the

knowledge that he has devoted his best energies to the service of the good cause.
—Albert Einstein (1879-1955)

“G randpa Tom, it was exciting! The teacher told us about electricity and how elec-
tricity does not cause pollution or climate change,” Luke exclaimed. But then he
turned quizzical and asked, “If electricity does not cause pollution, why don’t we
just switch to using only electricity?”

Luke’s grandfather explained that electricity does not occur naturally, or at least
not in sustainable amounts. Rather, electricity is generated from other forms of
energy. “The world is trying to switch from carbon-based fuels like crude oil, coal,
and natural gas to renewable fuels — primarily wind and solar, Grandpa Tom said.
“But wind and solar are not as dependable as those carbon-based fuels and require
lots of storage for when they aren’t generating,” Grandpa Tom elaborated.

Thegrandfather went on to explain that one of the primary advantages of electric-
ity produced from “fossil fuels” is fossil fuels contain chemical energy derived many
years ago from the sun, and the chemical energy stored in fossil fuels is convertible to
electrical energy nearly instantaneously and on demand, whereas wind and solar can
only generate significant amounts of electricity when atmospheric conditions allow.

A pensive frown came onto Luke’s face, and, after a brief pause, he said, “It
sounds like maybe electricity is not as simple as I thought”

“And life in general,” Grandpa Tom added.

Electricity and Magnetism

Magnetic fields generate most of the electricity consumed in the world.
Conversely, electricity can generate magnetic fields. So, magnetic fields and electric-
ity are causally, and directly, related — a recurrent theme throughout this text. Most
people use the terms magnetic field and magnetic force interchangeably, but physi-
cists consider that incorrect. They say magnetic fields acting on an object produce a
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positive is positive, and negative multiplied by negative is also positive, power is
always positive — at least as long as voltage and current are synchronized.

Figure 1-12 combines the voltage and current from Figure 1-11 to graph the
power they produce.

1 5 T T T T T T T T T

10 B

Power (kilowatts)
(&3]
T
|

_5 1 1 | 1 1 1 1 1 1
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Time (Seconds)

Figure 1-12. Graph of Power Resulting from 60 Hz, 120 Volt AC Applied to a 2-Ohm Resistor.
Voltage and current are in phase, so power is always positive, indicating energy transfer from the
generator is to a load resistor.

AC can be thought of as electrical energy waves alternating quickly and travel-
ing fast.

Figure 1-12 shows power driving a resistive load. This text will discuss in a later
section the concept of reactive loads and how those loads impact volts, current,
and power.

Converting AC to DC

Many electronic devices operate on DC current, meaning AC must be con-
verted to DC for them to work properly. Devices called rectifiers, which allow
current transmission in only one direction, commonly accomplish that conversion.
Figure 1-13 shows what happens if the alternating current from Figure 1-11 passes
through a half-wave rectifier.

Figure 1-14 shows what happens if the alternating current from Figure 1-11
passes through a full-wave rectifier.

From these two figures, it is easy to guess where each got its name.
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outskirts of the city (at that time). From there, the utility distributed electricity to
eight transformer stations in the city.

Electric supply to the city of Mumbai, India (formerly known as Bombay)
and its southern suburbs comes from Bombay Electric Supply and Transport.
Originally, Brihanmumbai Electricity Supply and Transport was set up in 1873 as
a tramway company called “Bombay Tramway Company Limited” In 1905, the
company set up a thermal power station to generate electricity for its trams and to
supply electricity to the city. It then rebranded itself to Bombay Electric Supply &
Tramways (BEST) Company. In 1947, the Municipal Corporation took over BEST
and rebranded it Bombay Electric Supply & Transport. In 1995, it was renamed
Brihanmumbeai Electric Supply & Transport.

Electrical Cooperatives

TheRural Electrification Act, passed by the U.S. Congress in 1936, provided fed-
eral loans for the installation of electrical distribution systems to serve isolated rural
areas of the United States. The funding was channeled through cooperative electric
power companies, hundreds of which still exist in the U.S today. By 1942, almost
one-half of the farms in the U.S. had electricity due to the Rural Electrification
Administration. By 1950, virtually all farms in the U.S. had electricity.

Two examples of a rural cooperative are Pedernales Electric Cooperative,
headquartered in Johnson City, Texas, which was organized in 1938, and the San
Bernard Electric (Co-op), which built eighty-nine miles of power lines in 1940. It
initially served 141 members in the rural areas of Colorado and Austin Counties.

U. S. Federal Involvement

The U.S. Federal Government also became involved in electricity generation
and transmission through various entities including the Boulder (later Hoover)
Dam, beginning in 1931 (completed in 1936); the Tennessee Valley Authority
(1933); Bonneville Power Administration (1937); the Grand Coulee Dam (between
1933 and 1942); Southwestern Power Administration (1943); and Southeastern
Power Administration (1950).

1950-2000: Nuclear, Geothermal, Solar, Wind,
Storage, and DC

The post-war years saw global economic growth driven by mounting con-
sumer expectations for reliable and inexpensive energy and fueled by cheap
energy of all kinds, including electricity produced from traditional fossil fuels.
The world entered the last half of the twentieth century hungry for energy and

59
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Ocean Thermal Energy Conversion (OTEC)

This technology uses the temperature difference between the ocean’s surface
and deeper water. Deep water, typically defined as 1,000 meters, has a temperature
around 5°C. At the surface, temperatures average 25°C. This 20°C temperature dif-
ference drives a turbine and generator. OTEC uses two approaches: open and closed.

The open system resembles a geothermal flash system. Injecting seawater from
the surface into a vessel at low pressure causes it to vaporize. This vapor (low-
temperature steam) goes to a turbine to power a generator. Cool seawater extracted
from the deep condenses the steam before it gets returned to the ocean. Because vapor-
ization leaves behind the salt, the condensation can also produce desalinated water.

The closed system looks like a geothermal binary system because it flashes a
working fluid with a lower boiling point than water, such as ammonia, to drive the
turbine. The working fluid condenses and goes through the cycle again. The 20°C
temperature difference between surface water and deep water means the efficiency
of this process hovers around 7%.

Tidal Energy

The gravitational force of the moon causes tides to cycle about every twelve
hours. As tides change, water flows towards the shore and then away from the
shore. This moving water turns a turbine attached to a generator. Tidal turbines
work best in shallow water where tidal flow occurs. Because water is much denser
than air, tidal water turbines capture more energy than wind turbines.

Another tidal system called a tidal barrage can capture tidal energy by using a
dam-like structure to capture water during high tide. During low tide, it releases
water through the penstock to turn the turbine to generate electricity.

Wave Energy

Wave motion also provides energy from the ocean. This text covers several ways
to capture wave energy.

Floating Buoy: A floating buoy anchored to the bottom of the sea rises and falls
with the waves. That up-and-down motion turns a shaft and moves a generator to
make electricity.

Surface Floats: A device with multiple arms anchored to the ocean floor floats
on the ocean surface. The arms flex with the wave motion and a hydraulic pump
powers a generator to produce electricity.

Oscillating Water Columns (OWC): A partially submerged structure in the
ocean allows incoming waves to enter at the bottom, and the rising water column
pressurizes air in the structure’s top. As the water recedes, the top part depressur-
izes and the pressure change pushes and pulls air through a turbine connected to a
generator. A 500kW OWC has operated in Islay, Scotland, since 2000.
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as they lay out the route and choose the support structures, conductors, and other
components. In the words of one veteran designer, laying out the route and select-
ing the components has its challenges, but the two largest challenges and the ones
taking the longest are permitting and acquiring ROWs. Transmission engineers
seek safe, reliable, resilient, secure, and cost-effective designs, and work with a
myriad of stakeholders towards achieving that goal.

Acquiring Rights-of-Way

Transmission lines can extend hundreds of miles and involve thousands of
landowners with individual needs and wants. Some work diligently with the trans-
mission companies for an acceptable arrangement. Some just do not want a trans-
mission line built on their property (often referred to as the “Not in My Backyard”
philosophy or NIMBY). They see that many others benefit while they bear the lion’s
share of the burden.

This text acknowledges the challenge of acquiring ROWs but offers no elegant
solutions other than starting early, conducting thorough analysis and justification,
meeting with regulators well in advance, and communicating with transparency.
Theauthors acknowledge and admit they like clean and abundant power but would
prefer not having a transmission line or substation in their backyards.

Permitting

Line construction requires many permits. In the United States, permitting can
stretch from the Federal Energy Regulatory Commission (FERC) for an overall
permit to the county commissioners who approve road crossings.

The National Environmental Protection Act (NEPA) may require an Environ-
mental Impact Statement (EIS) or Environmental Assessment (EA). Transmission
planners wade through a labyrinth of federal, state, and local laws, rules, regula-
tions, procedures, and public comment periods, attempting to balance the view-
points and needs of numerous stakeholders, all with their own point of view.

Substation Design

Substation designers start with the substation’s function and location. They
consider many other factors and select the components and best control scheme
for the needed functions at the specified voltage and current. Designers consider
how to arrange components on the substation property and create detailed draw-
ings reflecting that arrangement. They also consider how the components connect
and provide those details on plan drawings. Like transmission engineers, substa-
tion engineers work to provide safe, reliable, resilient, secure and cost-effective
designs to satisfy stakeholder needs.
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Distribution Components

Various components connect to distribution systems along their routes. This
section discusses grid protection devices, including circuit breakers, automatic
distribution circuit reclosers, sectionalizers, and disconnects, as well as voltage
regulating transformers, capacitors, and meters.

Circuit Breakers

As distribution lines exit the substation, circuit breakers protect the substation
and feeders by separating the substation from the line in the event of a fault (abnor-
mal current). Circuit breakers have fixed and moving contacts (electrodes) in a
closed chamber containing a fluid (either liquid or gas) to smother any arc between
the contacts. In normal conditions, the contacts stay closed. When a fault occurs,
the contacts open manually or by remote control (when needed). When the grid
experiences a fault, the breaker trip coils energize and pull apart the contacts to
open (break) the circuit.

Because circuit breakers are designed to operate under load, grid operators and
field technicians use them to de-energize substations prior to opening substation
incoming and outgoing disconnects.

Automatic Distribution Circuit Reclosers

Normally just called reclosers, this device, like a circuit breaker, detects faults
and opens to interrupt the fault current. Unlike circuit breakers, reclosers auto-
matically reclose (hence the name recloser) if the fault clears quickly — for exam-
ple, when a tree limb momentarily touches a power line and then falls to the
ground.

Sectionalizer

Sectionalizers work in concert with reclosers and keep track of how many
times reclosers open and close. When the number of cycles reaches a pre-
set value, the sectionalizer opens and remains open until reset (manually or
remotely). Sectionalizers cannot operate under load and need an upstream cir-
cuit breaker or recloser that can operate under load. Because the sectionalizer
opens before the recloser closes, it does not have to operate under load. Preset
cycle values vary by application and are often only one cycle for underground
lines because repetitive faults might damage the underground conductor’s pro-
tective coating.

Reclosing and sectionalizing are functions that, in the past, were performed
by two separate devices. Technology improved, and reclosers can now be pro-
grammed to also act as sectionalizers and remain open after a preset number of
cycles. Figure 5-16 shows a protective device on a single-phase line.





