Fundamentals of Marine Riser Mechanics

	Preface to the Second Edition xxi
	Preface to the First Edition xxiii
	Nomenclaturexxv
	SI Unit Equivalentsxxvii
1	Introduction
	Riser Types 1
	Low-pressure drilling risers2
	High-pressure drilling risers4
	Completion/workover risers5
	Bundled risers5
	Flexible risers7
	Individual top-tensioned risers (TTRs)9
	Steel catenary risers (SCRs)10
	Mid-depth export lines10
	Overview
	Excel File SCR-Example.xls14
	Summary 16
	Notes
2	Pipe and Riser Deflections and Global Stability: The Effective
	Tension Concept 19
	Archimedes' Law 19
	Archimedes' Law—Proof by Superposition
	Internal Forces in a Submerged Body 22
	Curvature, Deflections, and Stability of Pipes and Risers
	under Pressure
	Effective Tension—a Physical Interpretation/Definition
	Effective Tension—a Mathematical Approach
	Comparisons with Analogous Engineering Concepts 29
	Requirements of Codes of Practice
	Excel File <i>Riser-Tensions.xls</i>

	Summary 34
	Notes
3	Application of Effective Tension: Frequent Difficulties
	and Particular Cases
	End Loads and End Effects
	Horizontal tubes
	Nonhorizontal tubes
	Buoyancy 40
	Recurrent Questions and Problems 42
	Lateral loads resulting from axial forces in fluid columns42
	Buckling of suspended rods, pipes, and cables
	Buckling of pressurized pipes45
	Influence of pressure end load on stability45
	Buckling of pipes with expansion joints
	Forces in connectors46
	Multi-tube Risers: Components of Effective Tension and
	Apparent Weight 48
	Risers composed of separate tubes
	Risers composed of tubes within tubes
	Effective Tension and Riser Dynamics 51
	Influence of internal flow51
	Hydrodynamic forces52
	Principle Reasons for Confusion about Effective Tension 53
	Summary 54
	Notes
4	Pipe and Riser Stresses 57
	Stresses in Thick-Walled Elastic Pipes57
	Effective Stress and Excess Stress
	Von Mises' Equivalent Stress
	Position of Codes of Practice with Respect to Stresses
	Principal stresses63

	Two Particular Yield Problems.65
	Yield of tubes under pressure with and without end effect $\dots 65$
	Yield of tubes under pressure with axial load66
	Numerical Example and Use of Excel File <i>Riser-Stresses.xls</i> 67
	Summary
	Notes
5	Pipe and Riser Strains
	Axial Strains of Thick-Walled Elastic Isotropic Pipes
	Axial Strains of Anisotropic Pipes
	Determination of Equivalent Poisson's Ratios for
	Anisotropic Pipes
	Pressure-Induced Buckling of Pipes Fixed at Both Extremities75
	Pre-buckling behavior76
	Post-buckling behavior77
	Pipe Stretch Following Upending
	Riser Tension and Stretch Resulting from Internal Changes 80
	Single-tube uniform risers80
	Single-tube segmented risers81
	Multi-tube risers83
	Influence of Tensioners86
	Summary
	Notes
6	Tensioned-Beam Behavior
	Excel File <i>Tensioned-Beam.xls</i> 92
	Influence of Bending Stiffness for Beams with Uniform Load \dots 92
	Influence of Bending Stiffness for Beams with Parabolic Load 94
	Influence of End Moment
	End Rotational Stiffness
	End Shear Force
	Beam Angles Deduced from Cable Angles100
	Summary
	Note

FUNDAMENTALS OF MARINE RISER MECHANICS, SECOND EDITION

7	Statics of Near-Vertical Cables	103
	Uniform Cable with Current Load	103
	Uniform Cable with Zero Current Load	105
	Segmented Cable with Current Load	107
	Segmented Cable with Zero Current Load	107
	Simple Approximate Solutions for Near-Vertical Cables	108
	Uniform cable with zero current	109
	Segmented cable with zero current	109
	Summary	110
	Note	110
8	Near-Vertical Riser Static Behavior	111
	Riser Linear Behavior	111
	Excel Files Uniform-Riser.xls and Segmented-Riser.xls	112
	Curvature and Profiles	112
	End Rotational Stiffness	116
	End Shear	118
	Riser Angles Deduced from Cable Angles	118
	Summary	121
	Notes	121
9	Stress Joint Design	123
	SJ Forces and Design Requirements	124
	SJ with Constant Curvature	126
	SJ with Constant Maximum Bending Stress	128
	Wall Thickness	131
	SJ with Tapered Wall	131
	Simulation and Verification Using Excel File SJ-Design.xls	131
	Numerical Example	133
	Summary	134
10	Riser Bundles: Local Bending between Guides	135
	General Bundle Behavior	135
	Distribution of Moments According to Load Type	139
	Apparent weight loads normal to pipe axis	140

	Hydrodynamic loads140
	Inertia forces141
	Numerical Application Using Excel File <i>Bundle-Moments.xls</i> 141
	Decomposition and Recomposition of Moments 143
	Summary
11	Near-Vertical Risers Associated with Floating Platforms
	with Stiff Tensioners145
	TLP Riser Stretch and Setdown Due to Platform Offset 146
	Riser stretch148
	Influence of third-order effects149
	TLP Riser Tension and Sag Due to Offset: A Simplified Calculation
	Numerical Example Using Excel File <i>TLP-Risers.xls</i> 151
	Floating Platform Riser Tension and Sag Due to Offset: A Simplified Calculation153
	Numerical Example Using Excel File <i>Floater-Risers.xls</i> 154
	Influence of Internal Changes on Riser Tension and Profile 156
	Application to Composite Riser with Steel Tubings 158
	Tubing with balanced expansion joint159
	Influence of tubing pressure on riser profile160
	Summary 161
	Notes
12	Steel Catenary Risers163
	Basic Differential Equation 163
	Cable Catenary Equations 164
	TDP Shift Due to Top-End Movement Using Excel File TDP-Shift xls 165
	Catenary and Flow-Line Stretch 167
	Estimate of total stretch ($\Lambda s + \Lambda f$) 168
	Global Influence of Bending Stiffness
	Details of Numerical Analyses
	Influence of Bending Stiffness on TDP Position
	Top Tension, TDP Shear Force, and Soil Reaction

FUNDAMENTALS OF MARINE RISER MECHANICS, SECOND EDITION

	Summary 177
	Notes
13	Axial Vibrations of Fixed Risers
	The ODP Experience
	Axial Stress Waves
	Axial Displacement-Tension Relationships for a Uniform Riser
	Responses of a Uniform Riser, Using Excel File <i>Fixed-Axial-Vibrations.xls</i> 182
	Dynamic Stiffness of a Uniform Riser 185
	Axial Vibration of a Segmented Riser 186
	Summary 187
	Notes
14	Axial Vibrations of Hung-Off Risers
	Uniform Riser
	Uniform Riser with Concentrated Mass at Lower End 191
	Simulations Using Excel File <i>Hungoff-Free-Vibrations.xls</i> 193
	Segmented Riser with Concentrated Mass at Lower End 195
	Riser Comprising Multiple Repeated Joints
	Uniform Riser with Distributed Damping 199
	Uniform Riser with Equivalent Damping
	Simulations Using Excel File Hungoff-Damped-Vibrations.xls 201
	Hung-Off Riser Experience and Research Campaigns
	Summary
	Notes
15	Transverse Modal Vibrations of Near-Vertical Risers
	Physics of Undamped Transverse Vibrations
	Vortex-Induced Modal Vibrations
	Basic Equations for Vibration of a Beam under Constant Tension 214
	Bessel Cable Analysis of a Riser without Bending Stiffness
	(EI = 0)

Simple Cable Analysis of a Riser without Bending Stiffness
(<i>EI</i> = 0)
Resonant frequencies, periods, and riser mean celerity219
Evaluation of parameter $z_{\rm x}$
Positions of nodes and antinodes
Mean celerities between adjacent nodes
Bottom-end angle222
Riser curvature (1/R) at the antinodes
Maximum riser curvature (1/R)224
Simple Beam Analysis of a Riser with Bending Stiffness
$(EI \neq 0)$
Approximate Beam Analysis of a Riser with Bending Stiffness
$(EI \neq 0)$
Validation Using Excel File Uniform-Transverse-Modal.xis 229
Segmented Risers—Modal Responses
Validation Using Excel File Segmented-Transverse-Modal.xls 236
Extension to Catenary Risers
Summary
Notes
Effective Tension and Buoyancy—Additional Arguments243
A Persuasive Objection to the Concept of Effective Tension:
The Flawed Argument
The Euler Buckling Comparison
Bending and Buckling of a Pipe Segment between
Horizontal Sections
Case I: Weightless pipe and contents, with internal
Case 2. Dine and contents with weight and internal
pressure 249
Case 3: Influence of external pressure
Buovancy, Buovancy Effects, and Apparent Weight
Equilibrium of a submerged test cube 253
Apparent weight and buoyancy effect
Application to risers
**

16

	Buoyancy conclusion	255
	Summary	255
	Notes	255
17	Introduction to Helical Buckling	257
	Analysis Assumptions	257
	Helix Pitch and Angle	258
	Helix Radius	259
	Helix Axes	259
	Relationships between Helix Forces	260
	Relationships between Helix Moments	261
	Helix Curvature and Moment about the Normal Axis	262
	The Moment Equation about the Radial Axis	264
	Moment equation about the radial axis OD, for the regular helix	265
	Moment equation about the radial axis OD for an irregular helix	265
	Summary	266
	Notes	266
18	Exact Analysis of a Regular Helix	267
	Static Analysis	267
	Shear force (<i>F</i> _c)	267
	Vertical force (P) and wall force per unit length $(w_r) \dots$	
	Horizontal-tangential force (<i>F</i> _h)	269
	Pipe axial force (<i>F</i> _a)	269
	Verification of Regular Helix Forces by Use of the Concept of Work	Virtual 270
	The virtual work concept	270
	Shear force (<i>F</i> _s) by virtual work	271
	Vertical force (<i>P</i>) by virtual work	273
	Horizontal-tangential force (F_h) by virtual work	273
	Wall force per unit length (w_r) by virtual work	274
	Pipe axial force (<i>F</i> _a) by virtual work	274

	Concise Review of Regular Helix Exact Force and
	Moment Equations
	Comparison with published expressions for regular helix forces
	Summary
	Notes
19	Analysis of Helix End Sections
	Geometry of the Helix End Section
	Continuity between the Transition Section and the Free-Wall Section
	Transition Section Parameters
	The horizontal force $(F_{\rm h})$
	Shear force (F_{α})
	Curvature about the radial axis (C_r)
	Relationship between curvature about the radial axis (C_r) and angle (ϕ)
	Free-Wall Section Parameters
	Analysis of the free-wall section
	Contact point—continuity requirements
	End-Section Parameters, as a Function of Fixity Factor <i>Q</i>
	Helix End Section with a Disturbing End Moment
	Essential Verifications
	Graphical Plots
	Length and Angle Turned Through by the Transition Section 298
	Excel File Helix-Plus-End-Sections.xls
	Summary
20	Drill-Pipe Deflection within a Seabed Blowout Preventer Induced by Helical Buckling in the Riser
	The Macondo Accident Scenario. 302
	Effective Tension and Effective Compression in the Drill Pine 304
	Below the VBR
	Above the VBR

	Macondo Data 305
	Modeling the Drill Pipe below the VBR
	The moment/angle ratio (M_V/ϕ_V) at the VBR, before down-hole wall contact
	The moment/angle ratio $(M_{\rm C}/\phi_{\rm C})$ at the down-hole contact point
	The relationship between moment M_V and ϕ_V angle at the VBR, following down-hole wall contact
	Excel file <i>Down-Hole-Pipe.xls</i>
	Procedure for Assuring Continuity at the VBR and Annular 310
	Analysis of the Drill Pipe within the BOP
	Helix End Fixity Factor at the Annular
	Moments and Angles at Junctions. Final Iterations. Deflection Calculations
	Excel File Complete-Drill-Pipe.xls
	Application to the Macondo Drill Pipe 316
	Macondo Conclusions
	Summary
	Note
21	Transition from Planar to Helical Buckling
	Initial Out-of-Straightness
	Description of Planar Buckling inside a Casing
	Analysis of the Development of the Planar Buckle
	Initiation of Helical Buckling
	Growth of the Helical Buckle 328
	Pin-Ended Pipe Example 329
	Example Calculations
	Extension to Pipes with Other End Fixities
	Summary

Appendix A Tensioned-Beam Equations
Small-Angle Deflections
Large-Angle Deflections
Comments and Reminders
Convergence between Small- and Large-Angle Deflection Equations
Appendix B Tension Calculations for Simple Riser Cases
Appendix C Application of the Morison Equation to Risers $\ldots \ldots 342$
The Drag Force
The Inertia Force
The Controversy
Decrease of Wave-Induced Drag and Inertia Forces with Depth
Complicated Biser Geometries
Influence of Vortex-Induced Vibrations
Notes
Appendix D Stress and Strain Relationships in a Thick-Walled Pipe349
General Stress Relationships
Strain Relationships for Thick-Walled Pipes
Stress-Strain Equations for Thick-Walled Pipes
Axial Stress for Thick-Walled Pipes
Appendix E Equivalent Poisson's Ratios for Anisotropic Pipes355
Ratios Deduced from Material Characteristics
Determination of $\overline{v_e}$ from an Axial Load Test
Appendix F Curvature of a Tensioned Beam Subject to Generalized Load359
Application to Parabolic Load
Appendix G Riser Bundle Pipe Moments between Guides $\ldots \ldots 363$
Pipe under Tension (T)
Pipe under Compression (F)
Pipe under Zero Axial Load ($T = F = 0$)

FUNDAMENTALS OF MARINE RISER MECHANICS, SECOND EDITION

Appendix H Catenary Equations	369
Cable Catenary Equations	369
Extensible Catenary Equations	371
Change in the horizontal projection Δx , resulting from pipe stretch	373
Change in the vertical projection Δ <i>y</i> , resulting from pipe stretch	374
Total axial stretch Δs	374
Flow-line stretch Δf	375
Numerical Analyses	376
Appendix I Damped Axial Vibrations	379
Riser with Distributed Damping	379
Response with Damping at Equivalent End $(x = L')$	381
Equivalent Damping: Energy Dissipated per Cycle	383
Appendix J Notes on Excel Files	385
List of Files	385
File Formats and Color Codes	386
Numerical Calculations	387
Appendix K Detailed Analysis of a Helix Transition Section	391
Distance (s) along Pipe Axis as a Function of Helix Angle (ϕ).	392
Helix Angle (ϕ) as a Function of Distance (s) from the	
Contact Point	393
Angle (θ) Turned through in Plan View	394
Angle Precision Ratio (ϕ_J / ϕ_R) at the Junction with the Regular Helix	396
Appendix L Helix Free-Wall End Section	397
Force-Moment Belationship at the Contact Point	397
Analysis of the Free-Wall Section	398
Angles	
Pinned-ton-end case	401
Fixed-top-end case	401
Partially-fixed-top-end case, with fixity factor Ω	

Appendix M Analysis of Blowout Preventer Section of Drill Pipe $\ldots\ldots.405$
Derivation of Relationship between Moment/Angle Ratios
$M_{\rm A}/\phi_{\rm V}$ and $M_{\rm V}/\phi_{\rm V}$
Deduction of Planar Buckling Loads
Pinned-pinned case
Pinned-fixed case408
Fixed-fixed case408
Pinned-partially-fixed case409
Partial-end-fixity cases
Appendix N Analysis of Down-Hole Pipe Deflection 411
Pipe Deflection between the VBR and the Down-Hole
Contact Point
the Contact Point
Deflections below the Down-Hole Contact Point
Pipe Deflections below the VBR, before Wall Contact 416
Appendix 0 Influence of Pipe Torque on Regular Helix Forces 417
Shear Force (<i>F</i> _s)
Vertical Force (<i>P</i>) and Wall Force per Unit Length (w_r) 418
Horizontal Force $(F_{\rm h})$
Pipe Axial Force (F_a)
Relationship between Regular Helix Parameters
Index

Preface to the Second Edition

In the new edition, six further chapters, with associated appendices and Excel files, have been added to the original 15 chapters of the first edition. Those original chapters have been left unchanged apart from a small number of minor corrections. The new chapters 16–21 are the fruit of two prolonged dialogues.

The first dialogue was about the effective tension concept and lasted many months. A number of offshore engineers from around the world took part in the discussion about possible objections to the concept. Participants included Andrew Palmer, Joe Fowler, Ivar Fylling, David Garrett, Randy Long, Carl Martin Larsen, Michael Montgomery, Stan Christman, Ron Young, Jack Bayless, and myself.

During those discussions, Jack Bayless played the useful role of imagining every possible argument that could be used to contest the validity of the concept. All except one those arguments were easily answered by referring to the existing literature or the early chapters of this book. The one exception, which had not been previously addressed in the literature, was more difficult to answer. It was finally answered in an article written by myself for *World Oil* in 2012. The argument, and the answer to it, is the principal subject of the new chapter 16. In addition, the effectiveness of buoyancy units, partially or completely embedded in submerged objects, is also discussed in chapter 16, since it is a subject that can also cause confusion.

The second, much longer, dialogue was principally with Stan Christman. It began with a fascinating question about the buckling of a drill pipe inside a cylindrical casing, namely: how, when, and why does initial planar buckling get transformed into helical buckling? That question is only answered in the final chapter 21. Long before the answer was found, the discussion diverged onto the Macondo Accident (Gulf of Mexico, April 2010), with which Stan Christman was intimately concerned as a member of the US Chemical Safety Board investigation team.

Following the Macondo accident, the forensics had shown that the drill pipe had buckled helically inside the riser and that the pipe had deflected laterally inside the subsea BOP to such an extent that it prevented the BOP shear ram from sealing off the well flow. The analytical challenge now became: how closely is it possible to model helical buckling inside a riser associated with flexing of the pipe inside the BOP and downhole, using analytical methods? It took several steps to find the solution. The first step, which is the subject of chapters 17 and 18, was to find exact expressions for all the forces in a regular helix without using small angle deflection theory.

The second step was to find analytical solutions for helix end sections for a range of end conditions. Continuity at the Annular, at the upper end of the seabed BOP, meant that both the angle and the moment in the drillpipe would be continuous at that point. Analysis of Helix End Sections with both end angle and end moment is the subject of chapter 19. Such end sections always consist of two parts: a "free-wall section," out of contact with the casing wall, and a "transition section," which is in continuous contact with the casing wall and becomes asymptotic to the regular helix. Analysis of the "free-wall section" is straightforward, but long. The fact that there is an analytical solution at all for the "transition section" can be considered a mathematical miracle. To reach the solution three integrals had to "work," and they most fortunately did so.

The final step, explained in chapter 20, was to link the calculations of the deflection of the different sections of pipe to ensure perfect continuity of angles and moments at their junctions. Those sections include: the regular section and end sections of the helically buckled pipe in the riser, the deflected pipe in the BOP section, and the upper section of the downhole pipe in the well immediately below the BOP, taking into account eventual contact between the pipe and the casing wall. Figure 20–1 shows example elevations of the different sections, obtained using an accompanying Excel file.

I am immensely grateful to Stan Christman for contacting me about this complex and absorbing problem; for the vast number of exchanges we had about it; and for sharing with me his knowledge of BOPs, helical buckling, and the Macondo Accident.

I am also greatly indebted to Jean Falcimaigne for his crucial help in the analysis of the exact forces in a regular helix.

Stan and Jean also helped greatly by rereading and commenting on all chapters and appendixes of the new edition. I am also grateful to the following for their help in commenting on specific chapters: Rob Mitchell, Daniel Averbuch, and Chris Mungall.

> Charles Sparks January 2018

INTRODUCTION

his book is principally aimed at explaining the way marine risers behave. It begins with a brief review of the different types of risers that are in use today, with some history and illustrations, as well as references to the types of vessels with which they are associated. Then, an overview of the contents of the following chapters and appendices will be given.

Riser Types

Marine risers date from the 1950s, when they were first used to drill offshore California from barges. An important landmark occurred in 1961, when drilling took place from the dynamically positioned barge CUSS-1. Since those early days, risers have been used for four main purposes:

- Drilling
- Completion/workover
- Production/injection
- Export

Within each group, there is immense variety in the detail, dimensions, and materials, as explained in the following subsections. Drilling risers can be subdivided into low-pressure and high-pressure risers.

Production risers, used from floating platforms, inevitably followed some years after drilling risers. They were first used in the 1970s with an architecture inspired by that of top-tensioned drilling risers. Since then, they have taken many other forms, including bundled risers, flexible risers, top-tensioned risers (TTRs), steel catenary risers (SCRs), and hybrid risers, which are a combination of steel and flexible risers. can be chosen to give a particular bending effect such as circular bending, or constant bending stresses on the joint outer surface. An Excel file allows the resulting behavior of the joint to be checked numerically.

Chapter 10 looks at the local bending behavior of individual pipes, between guides, in a riser bundle. It is shown that the total moment in the bundle is given correctly by global analysis in which the bundle is simulated as a single structure with the combined characteristics of all the tubes in the bundle (total effective tension, total apparent weight, and total bending stiffness) subject to the sum of lateral loads on all the pipes. However, the distribution of the bending moments between the different pipes depends on several factors, including the load type (apparent weight, hydrodynamic or inertia forces) and the effective tension distribution between the pipes. A further Excel file gives the distribution of moments according to load type, for different data.

Chapter 11 is devoted to TTRs and shows how riser tension and sag evolve with platform offset, particularly when the risers are associated with TLPs or floating platforms. It is shown how riser behavior is influenced by tensioner stiffness, as well as by internal changes to the riser temperature, pressure, and fluid densities. Importantly, even internal changes in a tubing can influence the riser behavior, unless the tubing is equipped with a special, balanced expansion joint designed to avoid such effects.

Chapter 12 looks at the behavior of SCRs. The results obtained in chapter 6 are applied to parts of the catenary. It is deduced that bending stiffness has negligible effect on top tension and on the horizontal component of effective tension (H), for a given total horizontal projection of the total length (suspended part plus seafloor flow line), although the position of the TDP is changed. A simple expression for the change in position of the TDP is given in terms of the bending stiffness and the horizontal force (H). It is also shown that the curvature of a stiff catenary is *greater* than that of a pure catenary over most of its length, which may initially be surprising. Results of numerical simulations are included, which confirm those predictions.

Chapters 13–15 are devoted to riser vibrations. Axial and transverse vibrations are both the result of stress waves that continually ascend and descend a riser. Resonant periods are always equal to twice the time for a stress wave to run between adjacent nodes. Likewise, the time for stress waves to run between adjacent nodes and antinodes are all equal, even when the stress waves are not propagated at constant velocity.

Chapter 13 looks at axial vibration of risers fixed to the seabed at the lower end. Such vibrations are of little consequence in the real world, but For the other two tubes, *end load* is unhelpful for calculating internal forces because of the changes of diameter and the bends. If instead *end effect* is taken to mean the integral of all pressure-induced axial forces between the section under consideration and the tube end, then it will again give $(p_iA_i - p_eA_e)$ for each tube, where A_i and A_e are the respective internal and external cross-sectional areas at the point under consideration.

In reality, it is impossible to carry out the preceding integral for complicated cases. For example, the ends of the trans-Siberian gas pipeline are separated by thousands of kilometers. In Siberia, the ends are located deep in the earth in a multitude of wells. In Europe, they consist of literally millions of ends in domestic homes! Fortunately, it is not necessary to actually carry out the integral, since the result always gives $(p_iA_i - p_eA_e)$ — that is, the axial force in the internal fluid column less the axial force in the displaced fluid column, at the section concerned.

Nonhorizontal tubes

End loads and end effects can also be helpful in understanding the effect of pressures on perfectly vertical uniform tubes, as explained in appendix B. However, the situation becomes much more confusing for risers, which are neither perfectly vertical nor horizontal. Figure 3–2 shows five near-vertical tubes, all subject to the same effective tension T_e .

Fig. 3-2. Five near-vertical tubes under pressure

For example, an important parameter in a soil mechanics triaxial test is the difference between the vertical and the horizontal stresses acting on the soil sample, which is also a deviator stress.³

Effective Stress and Excess Stress

Effective tension $T_{\rm e}$ was seen to be the sum of the axial forces in the pipe plus internal fluid column, less the axial force in the displaced fluid column (see the italicized text following equation [2.9]). The reader may therefore be surprised to find effective stress $\sigma_{\rm le}$, which is equal to the effective tension divided by the wall section $T_{\rm e}/(A_{\rm e} - A_{\rm i})$, appearing as a component of the axial stress *in the pipe wall.*⁴

It follows from the equivalence between the effective tension and the excess tension mentioned in chapter 3, preceding equation (3.2). Figure 4–3 shows this equivalence graphically. External pressure has been excluded for clarity. Figure 4–3*a* shows the components of the effective tension, as given in italics following equation (2.9).

Fig. 4–3. Components of axial forces and stresses in a pipe under internal pressure

The left part of Figure 4–3*b* shows the decomposition of the forces in the pipe wall as given by equation (4.2). The *effective tension* T_e of figure 4–3*a* is plainly always equal to the *excess tension* T_e shown in the left-hand part of figure 4–3*b*. This is no surprise since the equivalence between effective

Riser Tension and Stretch Resulting from Internal Changes

Risers are frequently subject to changes of temperature, pressure, and internal fluids. All these parameter changes will influence the riser tension or axial stretch or both. It is shown below that the relationship between riser top tension T_t and stretch *e* can always be written in the form

$$T_{\rm t} = e(k_{\rm riser}) + \{F_{\rm w} - G_{\rm pt}\}$$
 (5.17)

where k_{riser} is the riser axial stiffness, F_w is a function of the riser apparent weight, and G_{pt} is a function of riser pressure and temperature.

To find the influence of riser parameters (temperatures, pressures, and internal fluids) on tension and stretch, it is necessary to calculate only the changes $\Delta F_{\rm w}$ and $\Delta G_{\rm pt}$ induced by the parameter changes. Then the changes in top tension $\Delta T_{\rm t}$ and stretch Δe are related by

$$\Delta T_{\rm t} = \Delta e(k_{\rm riser}) + \{\Delta F_{\rm w} - \Delta G_{\rm pt}\}$$
(5.18)

The functions $F_{\rm w}$ and $G_{\rm pt}$ and, hence, $\Delta F_{\rm w}$ and $\Delta G_{\rm pt}$ depend on the riser details. Expressions are derived in the following subsections, first for the case of a uniform riser consisting of a single tube, for which all riser characteristics are assumed to be either constant or to vary linearly over the riser length, and then for a single-tube segmented riser, for which the characteristics are assumed to be constant or linear for each riser segment. Multi-tube risers are examined subsequently. It is not possible to derive general universally applicable expressions for $F_{\rm w}$ and $G_{\rm pt}$ and, hence, $\Delta F_{\rm w}$ and $\Delta G_{\rm pt}$ for multi-tube risers, because of the vast number of different possible combinations. Nevertheless, the procedure to formulate expressions for $\Delta F_{\rm w}$ and $\Delta G_{\rm pt}$ for any particular multi-tube riser is explained.

Single-tube uniform risers

For a uniform near-vertical riser tube, with constant linear apparent weight and constant cross-sectional areas A_i and A_e and with characteristics of pressure and temperature varying linearly between the riser extremities, an approach similar to the pipe-upending problem can be used. The axial stretch can be calculated from the initial and final mean values of effective tension, pressure, and temperature at the midpoint of the tube.

STATICS OF NEAR-VERTICAL CABLES

his chapter explores the solution to the riser equation for the case in which tension varies along the length but the bending stiffness is neglected (EI = 0). For simplicity, the corresponding results are referred to as *cable* results.

Once the bending stiffness has been neglected, the differential equation governing the static riser profile (see equation [6.1]) becomes

$$T\frac{d^{2}y}{dx^{2}} + w\frac{dy}{dx} + f(x) = 0$$
(7.1)

where *T* is the effective tension and *w* is the apparent weight. Equation (7.1) can be rewritten as equation (7.2), which can be solved analytically without difficulty:

$$\frac{d}{dx}\left(T\frac{dy}{dx}\right) + f(x) = 0 \tag{7.2}$$

Uniform Cable with Current Load

Figure 7–1*a* shows a near-vertical cable with constant apparent weight per unit length, a top-end lateral offset y_t , and a lateral current load function f(x).

At all points along the SJ, the bending radius R_{jx} , the moment M_x and the bending stiffness EI_{jx} are related by $EI_{jx} = M_x R_{jx}$. This, combined with equation (9.11), leads to

$$\frac{EI_{jx}}{EI_{j0}} = \frac{M_x}{M_0} \left(\frac{R_{jx}}{R_{j0}} \right) = \frac{M_x}{M_0} (1 + bx)$$
(9.20)

Hence, from equation (9.19), the required bending-stiffness function EI_{jx} is given by

$$\frac{EI_{jx}}{EI_{j0}} = (1+bx) \left\{ 1 + k_{riser} x + \left(\frac{k_{j0}}{b}\right)^2 \left[(1+bx) \ln(1+bx) - bx \right] \right\}$$
(9.21)

If the bending stiffness of the SJ tip is the same as that of the riser and the value of k_{riser} given following equation (9.1) is accepted, then $k_{riser} = k_{j0}$.

To summarize, the procedure for dimensioning an SJ to obtain constant maximum bending stresses along its length is as follows:

- Determine the forces applied by the riser to the SJ tip—namely, the moment M_0 , the associated shear force F_0 , and the tension T_0 .
- Determine the angle $\boldsymbol{\theta}_i$ to be turned through by the SJ.
- Define the required curvature $1/R_{j\,0}$ at the SJ tip and corresponding bending stiffness $EI_{j\,0}$ (since $1/R_{j\,0} = M_0/EI_{j\,0}$). This should take into account the maximum allowable bending stress given by $\sigma_{\rm b} = E\phi_{\rm e\,0}/2R_{j\,0}$. This bending stress will be constant along the SJ.
- Propose a value for α_j that will apply to the ratios of the radii of curvature R_{jL}/R_{j0} and to the ratios of the external diameters ϕ_{eL}/ϕ_{e0} , at the ends of the SJ, as given by equation (9.10).
- Then, the required length of the SJ is given by equation (9.16), and the required bending-stiffness function EI_{ix} is given by equation (9.21).

Equation (9.21) defines the required bending-stiffness function to give constant maximum bending stresses along the SJ. The function is valid for any value of the SJ tip moment M_0 (and its associated shear force F_0) and, hence, for any angle through which the SJ is turned. Note, however, that the function is valid only for one value of tension T_0 .