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Chapter Summaries

Chapter 1—Natural Gas Basics

As natural gas moves through the value chain from a raw field mixture of
hydrocarbon and nonhydrocarbon gases and liquids to a commodity that can be
traded on national and international trading platforms, it undergoes a large number
of processes that tend to stabilize the fluids and divide them into their constituent
parts. Upstream deals with raw fluids and processes that are quite rudimentary.
Midstream deals with a stream which has had most of the liquids removed and the
process is primarily transportation. Downstream includes all the processes that
convert the slightly refined stream to a commodity. Accomplishing this refinement
requires an understanding of the possible fluids and how they are going to react to
changes in pressure and temperature.

Chapter 2—Natural Gas Reservoir, Exploration, Drilling,and Well Completion
Turning natural gas into a commercial product first requires accessing the
reservoir. First, the reservoir must be found (exploration) and rights to exploit
the reservoir must be acquired. Then it must be accessed (drilling), and if it likely
contains commercial quantities of natural gas, it must be made ready to produce
(well completion). Each of these activities is done by specialists in the field who
typically deal only with the other disciplines on the margins of their work (e.g.,
while a completions engineer has a significant interest in how a well is drilled, he
cannot begin his work until the drilling rig has rigged down and moved off the
well). There are a number of terms and concepts that are common to exploration,
drilling, completions, and production. Words like porosity, permeability, gas in
place, reservoir pressure and temperature, unconventional gas, etc. are important
terms across the exploration-to-production spectrum, and this chapter begins by
discussing those concepts.

Chapter 3—Natural Gas Production
Production engineering is focused on the question “What tools, equipment,
and techniques can be applied to a well to optimize well performance while
controlling costs?” This deceptively simple description belies the complexity of
finding the right tools, equipment, and techniques and then making them work

XVii
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together. One of the primary tools of the Production Engineer is downhole logging
discussed in the previous chapter. Based on the data available, the Production
Engineer has to decide if the existing surface pressure is appropriate to optimize
production (and if not, how to modify that pressure); if the well is appropriately
lifting liquids to the surface (and if not, how to improve liquid management);
and if downhole performance is impeded by near-wellbore conditions. Solutions
to any of these issues may be a combination of “rig work” and “facilities work”.
Rig work includes erecting a workover rig to change the tubing configuration
(e.g., change tubing size and/or bottom hole location), to install a deliquification
method, to mitigate the accumulation of debris (typically called a “cleanout”), or
to change the perforated interval. Rig work is generally preceded by “slick line”
or “wireline” work. This work involves a crew on a service truck running a tool
on a cable (slick line) into the hole, or running a powered tool on a cable with
a power cable (wireline or “electric line”) into the hole. Facilities work includes
efforts made on the surface to remove the things that can hinder production (e.g.,
replacing piping that is too small for the flow rate, equipment that is not properly
sized or configured, cleaning out accumulated solids, or adding compression
and/or electrical power).

Chapter 4—Upstream Production Operations

Upstream production operations are generally defined as being confined to the
piping and equipment after the wellhead “Christmas Tree” up to the beginning
of a gas gathering system. Gas wells are distinct from oil wells in that oil wells
tend to have very limited wellsite facilities, while gas wells have significant wellsite
facilities. Thereason for this difference is more historical than technical—oil is sold
at the lease level, and gas is sold at the individual well level. It is reasonable to send
all the wells on an oil lease to central facilities for oil/water separation, settling, and
gas extraction prior to custody transfer. However, raw gas-well fluids are always a
mixture of gases and liquids, with some of the liquids having significant economic
value. The problem is that those valuable liquids do not necessarily arrive at the
wellhead at a constant rate, nor at consistent gas:liquid ratios from well to well.
These complexities led the industry to separate gases from liquids and oil from
water at the wellsite, and to collect the liquids at the wellsite for sales. To do that
requires separators, compressors, pumps, tanks, measurement equipment, and
(occasionally) dehydration and H,S mitigation.

Chapter 5—Gas Compression
Reservoir gas is rarely suitable for delivery to end users. First, it is not located
where the end user is located, so it must be transported. Reservoir gas is rarely of
a suitable quality for end-user equipment, so it must be processed to the required
quality-standard with the proper energy content. Every step in the transportation
and processing of reservoir gas reduces the pressure of the gas. To boost the gas
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pressure to the values required for the next step, the gas is compressed. This
compression-and-use-of-energy cycle may be repeated several times in the journey
of a molecule of gas from the reservoir to the burner tip. As the gas moves through
the systems, it evolves towards becoming a commodity that is universally consistent
for all end-users. The most appropriate choice for compression technology evolves
as well.

Chapter 6—Piping, Valves, and Accessories
The only way to get raw, well-site gas from a well to a plant is by pipes. Once
the gas has been converted to a manufactured product inside a plant, there are
other transportation options such as liquefaction followed by conveyance by truck,
train, or ship. However, that can’t be done with well-site gas, gathering system
gas, midstream gas, or local-distribution system gas—these must be put into a
piping system. Despite the alternative transportation options for mainline gas
described above, most of it is transported via pipe as well. This chapter deals with
the differences between the five categories of piping that natural gas goes through,
and then the things common to all five categories.

Chapter 7—Produced Water

Every gas well will produce some amount of liquid over its productive period.
Some of this liquid may be hydrocarbons with commercial value, but some is
going to be nonpotable water. For the hydrocarbon liquids, an economic case is
easy to make for capturing and marketing those liquids. For nonpotable water, the
economics become quite murky. There is no way to produce the gas and leave the
water behind, so it is necessary to accumulate it, transport it, often treat it, and
dispose of it in a manner consistent with local regulations.

Chapter 8—Plant Processing of Natural Gas

Gas from a given natural gas reservoir is a mixture of components that may vary
from well to well and from day to day. Some of the individual components may
have heating values that far exceed the heating value of natural gas intended
for residential or industrial use; other components may hinder the combustion
process, and yet others can be toxic. Natural gas sold to wholesalers and end
users is a commodity, and as such, each volume unit of gas must meet certain
specifications. Thetransition from raw gas to commodity gasis done in conditioning
facilities. While the terms “gas treating” and “gas processing” are often used
interchangeably in the literature, this is not strictly correct. Gas treating implies
the removal of contaminants (including water), while gas processing implies the
recovery of liquid hydrocarbons for sale. Gas conditioning is a broader term that
encompasses both treating and processing. Gas sweetening involves the removal
of “sour” components (primarily H,S and CO,) and is generally synonymous with
gas treating.



XX

Natural Gas Production

Chapter 9—Transportation of Commodity Natural Gas

“Gas transportation” generally refers to moving gas from one location to another.
After raw wellhead gas is treated to meet sales specifications, it is deemed
“commodity” natural gas. Commodity gas is transported primarily via pipelines
in the United States and other developed countries. Pipelines are by far the most
effective and lowest cost option for transporting commodity gas anywhere that a
pipeline is a reasonable option. A pipeline across an ocean is not a cost-effective
option. Pipelines through tropical rainforests have proven to be very costly and
prone to disruption. For larger distances, alternative methods of transporting
commodity gas, including changing its form, or extracting energy from it and
transporting the energy are evolving. These alternatives include such technologies
as liquified natural gas, “gas to liquid” and “gas to wire” (i.e., power generation).

Chapter 10—The Role of Natural Gas in the Future of Energy
The role of natural gas in the world’s energy future must be viewed from the
perspective of transportation, residential use, electricity generation, and chemical
feedstocks weighed in the scale of changing climate and changing political
priorities. This chapter reviews each of these sectors to compare proposed paths
away from natural gas with the potential consequences of those paths.
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atural gas is a naturally occurring substance that is primarily made up of

methane (CH,) with varying amounts of heavier hydrocarbons and various
contaminants including inert substances (e.g., carbon dioxide and nitrogen) and
non-commercial volatile substances (e.g., hydrogen sulfide). Natural gas from any
given well can be very different from the next well, the next formation, the next
field, the next basin, etc. These differences range from minor (e.g., a small amount
of CO, in the gas may not have any impact at all on the ability of the gas to work in
an industrial furnace) to major (e.g., a gas stream with 20 mole percent hydrogen
sulfide would be deadly to any mammal breathing it) and everything in between.

As natural gas moves through the value chain it is converted from the naturally
occurring mix of gases, liquids, and solids that comes out of the ground into a
precisely defined commodity that is largely indistinguishable from one area of the
world to the next.

The value chain is typically broken into “upstream’; “midstream’, and
“downstream”. Each of these terms relates to the amount of processing that has been
applied to the gas. In upstream, the gas is often subjected to mechanical separation
to remove liquids and trace solids, and occasionally to rudimentary chemical
processes to remove water vapor and/or poisonous gases. In midstream, the gas is
largely free of liquids and solids, but some of the components are at or near their
dew point and condensation of liquids is common. Midstream gas is frequently
dehydrated to some extent to reduce condensation and to reduce the transport
costs (i.e., removing water vapor means that one does not have to compress and
transport that mass at pipeline pressures). Downstream gas is fundamentally
identical at the tailgate of every plant in the world. Water vapor has been taken to a
very low level, heavy hydrocarbon gases have been largely removed, contaminants
have been reduced to trace amounts, and the heating value of the gas has been
confirmed to be in a very narrow range. The gas that arrives at a home water heater
is indistinguishable from the gas that leaves the plant.

This chapter lays out some key concepts and terminology associated with
upstream operations. It includes discussions of natural gas properties, reservoir
concepts, and field classifications.
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Table 1.6. Selected gas measurement standard temperature and pressure

“Standard” “Standard” Methane Density
Pressure Temperature at std conditions
Undergrad Chemistry Texts 14.696 psia 60°F [15.56°C] 0.04237 Ibm/ft3
[101.325 kPaa]
Gas Measurement (USA) 14.73 psia 60°F [15.56°C] 0.04246 Ibm/ft3
[101.56 kPaa]
NIST and EPA 14.696 psia 20°C [68°F] 0.04172 Ibm/ft3
(New source emissions standards) | [101.325 kPaa]
NM and LA State Reporting 15.025 psia 60°F [15.56°C] 0.04332 Ibm/ft3
[103.59 kPaa]
DIN 101.33 kPaa 0°C [32°F] 0.04480 Ibm/ft3
[14.696 psia]
SPE 100.0 kPaa 15°C [59°F] 0.04188 Ibm/ft3
[14.5038 psia]
IS0 2314 101.325 kPaa 15°C [59°F] 0.04245 Ibm/ft3
[14.696 psia]
EPA (for air quality standards) 101.325 kPaa 25°C [77°F] 0.04102 Ibm/ft3
[14.696 psia]

This probably seems straightforward enough, but it has a significant twist to it.
Every regulator, every contract, every company has (or should have) a definition
for “standard pressure” and “standard temperature” and they can vary significantly
(Table 1.6).

The numbers all look very similar, but using the EPA air-quality number as the
denominator yields a 9 percent spread in this data. If worldwide gas production is
10 BSCm/day [353 BSCF/day], and average wellhead price is USD $1.50/MSCF then
the variance in producer revenue might be as high as +USD $50 million/day. Then
the gas is processed (and sold again), transported (and sold again), and distributed
to end users (and sold again). A nine percent swing in the basis for all of these sales
can easily turn into real money.

There is no “right” answer, and every jurisdiction, every company, and every
contract has what it considers a valid reason for a particular choice of standard
temperature and pressure. It would be a significant benefit to the world if they
could get together and agree on a single set of values, but there is not really any
momentum in that direction (in fact, when the U.S. EPA revised its New Source
Performance Standard in 2012, they decided that the “right” standard temperature
was 25°C [77°F] in spite of the U.S not being on the metric system, and 25°C not
being anyone else’s published standard temperature).

Itisabsolutelyincumbenton any engineer that participatesin contract negotiations
for gas sales, or who works in gas measurement, to verify that an explicit value is
specified for “standard pressure” and “standard temperature” and that those explicit
values are compatible with the way data is stored in the company databases. There
was an example with a major Oil & Gas company in the early 1980s where standard
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bulges that could be salt domes. The salt plug tends to be impermeable,
so it can act as the stratigraphic trap for reservoirs located on the flanks
of the diapir. Further, bulges in formations above the diapir can act as
traps some considerable distance above the salt plug.

« Anticline. Webster’s dictionary defines an anticline as “An arch of

stratified rock in which the layers bend downward in opposite directions
from the crest” A lot of things can cause an anticline to form, one of

the more common mechanisms is a salt dome that was stopped in mid
travel.

Pinchout. When a reservoir is sitting on rock that would be a suitable
cap rock at the same time it is below a suitable cap rock, the fringes of
the reservoir can have a situation where the reservoir rock simply peters
out and the impermeable rock above and below the reservoir rock come
together. This is a form of a stratigraphic trap.

Fault. Finally, geological actions can create a displacement of a section
of the rock column by a considerable distance. One of the things that can
happen in a displacement event is that a cap rock can be inserted into
the midst of the reservoir rock. This can lead to three reservoirs being
created, as depicted in Figure 2.2.

Figure 2.2. Types of reservoir traps (Simpson, 2017)
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leaves falling from trees in the autumn—it is unsightly and smelly so it MUST be a
pollutant. Rules too often stem from a bias towards pretty things that smell good.
Environmental regulations mostly deal with: (1) air quality; (2) water quality;
(3) protection of underground aquifers; and (4) protection of local plants and
wildlife. Therestrictions in each of these areas are vastly different from jurisdiction
to jurisdiction, and (sometimes) from day to day. A practice that has “always been
acceptable” can be declared “unacceptable” by a regulator or field inspector without
any justification at all. For example, one regulator may look at the regulation that
one cannot set an evaporation pond over an aquifer as “test wells on the site cannot
produce enough water to supply one home’, and the next regulator might find any
water in a test wellbore disqualifies the site. When that happens, there is very little
recourse beyond complying with the new (and possibly arbitrary) rule that might
only last as long as a particular regulator or inspector is in that job at that location.

Field abandonment

Even fields that were initially huge will eventually stop generating positive
economics. This does not mean to imply that the field is out of gas, just that it is
no longer economic (i.e., it costs more to produce the gas than it can be sold for).
Often a field may be uneconomic for one company, but extremely profitable for
another (usually smaller, with lower overhead) company. In those cases, the field
will change operators. Eventually, the field will fail to meet the economic criteria
of the new company. If the new company is unable to find a buyer, the field must
be abandoned.

One goal of the abandonment process
is to ensure that downhole structures are
protected from any residual chemicals
that may exist in the producing
formation. These residual chemicals
may be the remaining hydrocarbons, or
some substance added to the reservoir
by the production company. This goal is
met by pulling out all of the downhole
equipment, filling the wellbore with
concrete, welding a cap on the casing,
and placing a permanent marker on it.
Figure 2.22 is the abandonment marker
for the discovery well in the San Juan
Basin Fruitland Coal CBM Fairway
formation; the well name, location, and
abandonment permit number have been
added to the pipe freehand by a welder.
The marker in Figure 2.22 is typical, but

Figure 2.22. Cahn Gas Com 1
Abandonment Marker (Original photo)
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abruptly and the driller knows that the top plug is on the bottom. Both plugs can
then be drilled out.

Filling the entire annular space between the bore hole and the casing with
cement is crucial to the functions of a primary cement job. If the pipe is close to
the borehole on one side, then it is common for the cement to fail to displace the
mud. Since the mud is not designed to perform the functions of a primary cement
job, this can be a major problem. Off center pipe is corrected using centralizers
which are clipped to the outside of the pipe as it is run in the hole.

In a normal cement job, there is full hydrostatic pressure of the column of
cement from a given formation to surface. When a weaker seam is in the cemented
interval, this pressure can be too high, and cement can flow into that formation.
When there is concern about the mechanical strength of a given formation, the
driller can use down-hole tools to do the job in two stages. The first stage is
conventional and fills the annulus from the bottom. When the first stage cement
should have reached the location of the ports for the second stage, they stop,
set a packer, and reposition a down-hole fitting to open ports in the production
casing to allow the cement to enter the annulus from the location of the ports and
rise to the surface with much lower hydrostatic pressure. When the cement job
is finished, the ports are closed to maintain the steel/cement isolation system in
that location.

Figure 2.36. Primary Cementing (Original Image)





